Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Deep learning approaches for vehicle type classification with 3-D magnetic sensor
dc.contributor.author | Kolukisa, Burak | |
dc.contributor.author | Yildirim, Veli Can | |
dc.contributor.author | Elmas, Bahadir | |
dc.contributor.author | Ayyildiz, Cem | |
dc.contributor.author | Gungor, Vehbi Cagri | |
dc.date.accessioned | 2025-01-09T20:14:28Z | |
dc.date.available | 2025-01-09T20:14:28Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1389-1286 | |
dc.identifier.issn | 1872-7069 | |
dc.identifier.uri | https://doi.org/10.1016/j.comnet.2022.109326 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/9083 | |
dc.description.abstract | In the Intelligent Transportation Systems, it is crucial to determine the type of vehicles to improve traffic management, increase human comfort, and enable future development of transport infrastructures. This paper presents a deep learning-based vehicle type classification approach for intermediate road traffic. Specifically, a low-cost, easy-to-install, battery-operated 3-D traffic sensor is designed and developed. In addition, a total of 376 vehicle samples are collected, and the vehicles are identified into three different classes according to their structures: light, medium, and heavy. Firstly, an oversampling method is applied to increase the number of samples in the training set. Then, the signals are converted into time series for LSTM and GRU and 2-D images for transfer learning models. Finally, soft voting is proposed using the LSTM, GRU, and VGG16, which is the best transfer learning method for vehicle type classification. The developed system is portable, power-limited, battery-operated, and reliable. Comparative performance results show that the soft voting ensemble method using a deep learning classifier improves the accuracy and f-measure performances by 92.92% and 93.42%, respectively. Additionally, the battery lifetime of the developed magnetic sensor node can work for up to 2 years. | en_US |
dc.description.sponsorship | EUREKA; TUBITAK TEYDEB [9180036] | en_US |
dc.description.sponsorship | This research was supported by the international funding agency EUREKA with the project name ?NGA-ITMS (Next Generation Au-tonomous Intelligent Traffic Management System) . The project is funded nationally by TUBITAK TEYDEB with Project Number: 9180036. All authors approved the version of the manuscript to be published. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Computer Networks | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Intelligent Transportation Systems | en_US |
dc.subject | Magnetic sensor | en_US |
dc.subject | Vehicle classification | en_US |
dc.subject | Deep learning | en_US |
dc.title | Deep learning approaches for vehicle type classification with 3-D magnetic sensor | en_US |
dc.type | article | en_US |
dc.authorid | AYYILDIZ, Cem/0009-0009-7297-916X | |
dc.authorid | Kolukisa, Burak/0000-0003-0423-4595 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1016/j.comnet.2022.109326 | |
dc.identifier.volume | 217 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q1 | |
dc.identifier.wos | WOS:000869792900014 | |
dc.identifier.scopus | 2-s2.0-85137270899 | |
dc.identifier.scopusquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1544]
Scopus | Abstract and citation database -
Ꮃeb of Science [1747]
Web of Science platform