Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKolukisa, Burak
dc.contributor.authorYildirim, Veli Can
dc.contributor.authorElmas, Bahadir
dc.contributor.authorAyyildiz, Cem
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2025-01-09T20:14:28Z
dc.date.available2025-01-09T20:14:28Z
dc.date.issued2022
dc.identifier.issn1389-1286
dc.identifier.issn1872-7069
dc.identifier.urihttps://doi.org/10.1016/j.comnet.2022.109326
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9083
dc.description.abstractIn the Intelligent Transportation Systems, it is crucial to determine the type of vehicles to improve traffic management, increase human comfort, and enable future development of transport infrastructures. This paper presents a deep learning-based vehicle type classification approach for intermediate road traffic. Specifically, a low-cost, easy-to-install, battery-operated 3-D traffic sensor is designed and developed. In addition, a total of 376 vehicle samples are collected, and the vehicles are identified into three different classes according to their structures: light, medium, and heavy. Firstly, an oversampling method is applied to increase the number of samples in the training set. Then, the signals are converted into time series for LSTM and GRU and 2-D images for transfer learning models. Finally, soft voting is proposed using the LSTM, GRU, and VGG16, which is the best transfer learning method for vehicle type classification. The developed system is portable, power-limited, battery-operated, and reliable. Comparative performance results show that the soft voting ensemble method using a deep learning classifier improves the accuracy and f-measure performances by 92.92% and 93.42%, respectively. Additionally, the battery lifetime of the developed magnetic sensor node can work for up to 2 years.en_US
dc.description.sponsorshipEUREKA; TUBITAK TEYDEB [9180036]en_US
dc.description.sponsorshipThis research was supported by the international funding agency EUREKA with the project name ?NGA-ITMS (Next Generation Au-tonomous Intelligent Traffic Management System) . The project is funded nationally by TUBITAK TEYDEB with Project Number: 9180036. All authors approved the version of the manuscript to be published.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputer Networksen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntelligent Transportation Systemsen_US
dc.subjectMagnetic sensoren_US
dc.subjectVehicle classificationen_US
dc.subjectDeep learningen_US
dc.titleDeep learning approaches for vehicle type classification with 3-D magnetic sensoren_US
dc.typearticleen_US
dc.authoridAYYILDIZ, Cem/0009-0009-7297-916X
dc.authoridKolukisa, Burak/0000-0003-0423-4595
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.comnet.2022.109326
dc.identifier.volume217en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000869792900014
dc.identifier.scopus2-s2.0-85137270899
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster