Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCakiroglu, Celal
dc.contributor.authorIslam, Kamrul
dc.contributor.authorBekdas, Gebrail
dc.contributor.authorIsikdag, Umit
dc.contributor.authorMangalathu, Sujith
dc.date.accessioned2025-01-09T20:14:28Z
dc.date.available2025-01-09T20:14:28Z
dc.date.issued2022
dc.identifier.issn0950-0618
dc.identifier.issn1879-0526
dc.identifier.urihttps://doi.org/10.1016/j.conbuildmat.2022.129227
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9087
dc.description.abstractConcrete-filled steel tubular (CFST) columns have been popular in the construction industry due to enhanced mechanical properties such as higher strength and ductility, higher seismic resistance, and aesthetics. Extensive experimental, numerical and analytical studies have been conducted in the past few decades to assess the structural response of CFST columns under various loading conditions. However, there is still uncertainty in predicting the capacity of CFST columns, and most of the current codes are conservative. In this paper, data-driven machine learning (ML) models have been developed to predict the axial compression capacity of rectangular CFST columns. An extensive database of 719 experiments was collected from literature and is randomly used to train, test, and validate the ML models. Seven ML models, namely lasso regression, random forest, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and Categorical Gradient Boosting (CatBoost), are evaluated to predict the compression capacity of CFST stub columns under axial load. The performance of the different ML models in predicting the compressive strength of CFST columns is compared by different code equations prevalent in different parts of the world. It is found that LightGBM and CatBoost models performed better with an accuracy of 97.9% and 98.3%, respectively, compared to the existing design codes in predicting the capacity of CFST columns. Feature importance analyses and SHapley Additive explanations (SHAP) explain the ML model performances and make the developed models interpretable. Resistance factor is determined using the best performing ML model for compressive strength prediction of CFST stub columns following AISC 360-16 code provision.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofConstruction and Building Materialsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExplainable machine learningen_US
dc.subjectArtificial intelligence (AI)en_US
dc.subjectComposite columnen_US
dc.subjectCompressive capacityen_US
dc.subjectResistance factoren_US
dc.titleExplainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columnsen_US
dc.typearticleen_US
dc.authoridIslam, Kamrul/0000-0002-2780-9884
dc.authoridIsikdag, Umit/0000-0002-2660-0106
dc.authoridCakiroglu, Celal/0000-0001-7329-1230
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.conbuildmat.2022.129227
dc.identifier.volume356en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000901169700005
dc.identifier.scopus2-s2.0-85139076371
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster