Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Cooling load prediction of a double-story terrace house using ensemble learning techniques and genetic programming with SHAP approach
dc.contributor.author | Cakiroglu, Celal | |
dc.contributor.author | Aydin, Yaren | |
dc.contributor.author | Bekdas, Gebrail | |
dc.contributor.author | Isikdag, Umit | |
dc.contributor.author | Sadeghifam, Aidin Nobahar | |
dc.contributor.author | Abualigah, Laith | |
dc.date.accessioned | 2025-01-09T20:14:29Z | |
dc.date.available | 2025-01-09T20:14:29Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 0378-7788 | |
dc.identifier.issn | 1872-6178 | |
dc.identifier.uri | https://doi.org/10.1016/j.enbuild.2024.114254 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/9097 | |
dc.description.abstract | Since the cooling systems used in buildings in hot climates account for a significant portion of the energy consumption, it is very important for both economy and environment to accurately predict the cooling load and consider it in building designs. This study aimed to maximize energy efficiency by appropriately selecting the features of a building that affect its cooling load. To this end, data-driven, accurate, and accessible tools were developed that enable the prediction of the cooling load of a building by practitioners. The study involves simulating the energy consumption of a mid-rise, double-story terrace house in Malaysia using building information modeling (BIM) and estimating the cooling load using ensemble machine learning models and genetic programming. Categorical Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Random Forest (RF) models have been developed and made available as an online interactive graphical user interface on the Streamlit platform. Furthermore, the symbolic regression technique has been utilized to obtain a closed-form equation that predicts the cooling load. The dataset used for training the predictive models comprised 94,310 data points with 10 input variables and the cooling load as the output variable. Performance metrics such as the coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE) were used to measure the predictive model performances. The results of the machine learning models indicated successful prediction, with the CatBoost model achieving the highest score (R2 = 0.9990) among the four ensemble models and the predictive equation. The SHAP analysis determined the aspect ratio of the building as the most impactful feature of the building. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Science Sa | en_US |
dc.relation.ispartof | Energy and Buildings | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cooling load | en_US |
dc.subject | BIM | en_US |
dc.subject | Energy efficiency | en_US |
dc.subject | Predictive modeling | en_US |
dc.subject | Genetic programming | en_US |
dc.title | Cooling load prediction of a double-story terrace house using ensemble learning techniques and genetic programming with SHAP approach | en_US |
dc.type | article | en_US |
dc.authorid | Cakiroglu, Celal/0000-0001-7329-1230 | |
dc.authorid | Isikdag, Umit/0000-0002-2660-0106 | |
dc.authorid | Aydin, Yaren/0000-0002-5134-9822 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1016/j.enbuild.2024.114254 | |
dc.identifier.volume | 313 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | |
dc.identifier.wos | WOS:001240694300001 | |
dc.identifier.scopus | 2-s2.0-85192564314 | |
dc.identifier.scopusquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform