Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKocadagli, Ozan
dc.contributor.authorAsikgil, Baris
dc.date.accessioned2025-01-09T20:14:30Z
dc.date.available2025-01-09T20:14:30Z
dc.date.issued2014
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.04.035
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9101
dc.description.abstractThe Bayesian learning provides a natural way to model the nonlinear structure as the artificial neural networks due to their capability to cope with the model complexity. In this paper, an evolutionary Monte Carlo (MC) algorithm is proposed to train the Bayesian neural networks (BNNs) for the time series forecasting. This approach called as Genetic MC is based on Gaussian approximation with recursive hyperparameter. Generic MC integrates MC simulations with the genetic algorithms and the fuzzy membership functions. In the implementations, Genetic MC is compared with the traditional neural networks and time series techniques in terms of their forecasting performances over the weekly sales of a Finance Magazine. (C) 2014 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)en_US
dc.description.sponsorshipThis work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) when corresponding author visited the Institute for Integrating Statistics in Decision Sciences at The George Washington University, USA. The data used in the application was taken from Turkuvaz Distribution and Marketing Co.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlinear time seriesen_US
dc.subjectBayesian neural networksen_US
dc.subjectGaussian approximationen_US
dc.subjectRecursive hyperparametersen_US
dc.subjectGenetic algorithmsen_US
dc.subjectHybrid Monte Carlo simulationsen_US
dc.titleNonlinear time series forecasting with Bayesian neural networksen_US
dc.typearticleen_US
dc.authoridkocadagli, ozan/0000-0003-4354-7383
dc.authoridASIKGIL, BARIS/0000-0002-1408-3797
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.eswa.2014.04.035
dc.identifier.volume41en_US
dc.identifier.issue15en_US
dc.identifier.startpage6596en_US
dc.identifier.endpage6610en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000339694400006
dc.identifier.scopus2-s2.0-84902660037
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster