Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKocadagli, Ozan
dc.contributor.authorOzer, Ezgi
dc.contributor.authorBatista, Arnaldo G.
dc.date.accessioned2025-01-09T20:14:30Z
dc.date.available2025-01-09T20:14:30Z
dc.date.issued2023
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2022.118825
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9104
dc.description.abstractEpilepsy is the fourth most common neurological disorder, which affects the brain and brings out frequent seizures. They are bursts of electrical discharge that can cause a wide range of symptoms such as distraction or involuntary spasms involving the whole body. Preictal phase carries some important features related to seizures which can be found before seizure onset. Hence, this study introduces an efficient hybrid training procedure for machine learning (ML) classifiers that are able to classify Electroencephalogram (EEG) signals for the accurate detection of preictal phase. Essentially, the proposed approach consists of two stages: feature extraction and model estimation with feature selection. In this approach, while the feature extraction is executed by using wavelet transform, the model estimation is performed by hybrid ML classifiers. Essentially, this approach in-tegrates the training mechanism with a novel feature subset and model selection procedure based on the In-formation Complexity Criteria (ICOMP) and Genetic Algorithms. For preictal phase detection application, the CHB-MIT Scalp EEG dataset was analyzed by both the proposed and traditional approaches. From the analysis results, it can be concluded that the hybrid ML classifiers not only produce robust models in the context of model information complexity, but also provide superior performance outputs than the classical approaches with respect to validity and reliability, over test datasets.en_US
dc.description.sponsorshipScientific and Technological Research Council of TURKEY (TUBITAK); [1059B141900679]en_US
dc.description.sponsorshipThis study was granted in part by the Scientific and Technological Research Council of TURKEY (TUBITAK) . Grant No: 1059B141900679.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEpilepsyen_US
dc.subjectPreictalen_US
dc.subjectFeature extractionen_US
dc.subjectWavelet transformen_US
dc.subjectMachine learning classifiersen_US
dc.subjectFeature selectionen_US
dc.subjectGenetic algorithmsen_US
dc.subjectICOMPen_US
dc.titlePreictal phase detection on EEG signals using hybridized machine learning classifiers with a novel feature selection procedure based GAs and ICOMPen_US
dc.typearticleen_US
dc.authoridkocadagli, ozan/0000-0003-4354-7383
dc.authoridBatista, Arnaldo/0000-0002-2287-4265
dc.authoridOzer, Ezgi/0000-0003-1567-2216
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.eswa.2022.118825
dc.identifier.volume212en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000867544000004
dc.indekslendigikaynakWeb of Scienceen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster