Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorErdil, Mehtap
dc.contributor.authorYilgor, Nural
dc.contributor.authorKocadagli, Ozan
dc.date.accessioned2025-01-31T06:01:02Z
dc.date.available2025-01-31T06:01:02Z
dc.date.issued2025en_US
dc.identifier.issn17480272
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9353
dc.identifier.urihttps://doi.org/10.1080/17480272.2025.2450716
dc.description.abstractDetermining and classifying the contents of wood wastes, which possess an extremely heterogeneous structure, is crucial for their optimal utilization. The heterogeneous nature of waste wood poses significant challenges for its separation and classification. Also, the classical chemometric methods are not ergonomic in terms of time and cost. For this reason, this study aimed to develop an efficient ML-based decision support system (DSS) for accurate classification of waste wood in addition to being an ergonomic approach versus chemometric methods. To develop ML-based DSS, firstly absorbance values at 650–4000 cm−1 wavelength were measured using FTIR-ATR device for 200 wood-waste samples. Absorbance values at 52 key wavelengths, identified as the most effective for characterizing the samples, were used as input features to estimate ML classification models using artificial neural networks (ANN), random forest (RF), ensemble learning, multiple logistic regression (MLR), discriminant analysis, Naive Bayes, K-nearest neighbour (KNN), and support vector machines (SVM). The analysis results indicated that the developed DSS achieved quite a high classification accuracy rates, approaching 100%. As a result, this kind of ML-based DSS can be used as a practical and efficient tool to determine and classify the contents of wood wastes. © 2025 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francisen_US
dc.relation.ispartofWood Material Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFTIR-ATRen_US
dc.subjectmachine learningen_US
dc.subjectwood wastesen_US
dc.titleWood-waste classification using interpretable machine learningen_US
dc.typearticleen_US
dc.authorid0000-0003-4354-7383en_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, İstatistik Anabilim Dalıen_US
dc.institutionauthorKocadagli, Ozan
dc.identifier.doi10.1080/17480272.2025.2450716en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidAAO-2482-2021en_US
dc.authorscopusid57208567048en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:001404818900001
dc.identifier.scopus2-s2.0-85215664499en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster