Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorAydın, Yaren
dc.contributor.authorIsikdag, Umit
dc.contributor.authorNigdeli, Sinan Melih
dc.contributor.authorHajebi, Dara
dc.contributor.authorKim, Tae-Hyung
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2025-01-31T12:13:01Z
dc.date.available2025-02-02T12:13:01Z
dc.date.issued2025en_US
dc.identifier.citationBekdaş, G., Aydın, Y., Işıkdağ, U., Nigdeli, S. M., Hajebi, D., Kim, T.-H., & Geem, Z. W. (2025). Shear Wave Velocity Prediction with Hyperparameter Optimization. Information, 16(1), 60. https://doi.org/10.3390/info16010060en_US
dc.identifier.issn2078-2489
dc.identifier.urihttps://doi.org/10.3390/info16010060
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9355
dc.description.abstractShear wave velocity (Vs) is an important soil parameter to be known for earthquake-resistant structural design and an important parameter for determining the dynamic properties of soils such as modulus of elasticity and shear modulus. Different Vs measurement methods are available. However, these methods, which are costly and labor intensive, have led to the search for new methods for determining the Vs. This study aims to predict shear wave velocity (Vs (m/s)) using depth (m), cone resistance (qc) (MPa), sleeve friction (fs) (kPa), pore water pressure (u2) (kPa), N, and unit weight (kN/m3). Since shear wave velocity varies with depth, regression studies were performed at depths up to 30 m in this study. The dataset used in this study is an open-source dataset, and the soil data are from the Taipei Basin. This dataset was extracted, and a 494-line dataset was created. In this study, using HyperNetExplorer 2024V1, Vs prediction based on depth (m), cone resistance (qc) (MPa), shell friction (fs), pore water pressure (u2) (kPa), N, and unit weight (kN/m3) values could be performed with satisfactory results (R2 = 0.78, MSE = 596.43). Satisfactory results were obtained in this study, in which Explainable Artificial Intelligence (XAI) models were also used. © 2025 by the authors.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofInformation (Switzerland)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectexplainable artificial intelligenceen_US
dc.subjecthyperparameter optimizationen_US
dc.subjectpredictionen_US
dc.subjectshear wave velocityen_US
dc.titleShear Wave Velocity Prediction with Hyperparameter Optimizationen_US
dc.typearticleen_US
dc.authorid0000-0002-2660-0106en_US
dc.departmentFakülteler, Mimarlık Fakültesi, Mimarlık Bölümüen_US
dc.institutionauthorIşikdağ, Ümit
dc.identifier.doi10.3390/info16010060en_US
dc.identifier.volume16en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidA-3306-2012en_US
dc.authorscopusid25223356600en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.scopus2-s2.0-85215694880en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1548]
    Scopus | Abstract and citation database

Basit öğe kaydını göster