Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBedikyan, Sevan
dc.date.accessioned2025-06-03T10:47:09Z
dc.date.available2025-06-03T10:47:09Z
dc.date.issued2025en_US
dc.identifier.citationBedikyan, S.. (2024). Local Non Abelian Class Field Theory. Hacettepe Journal of Mathematics and Statistics, 1–20. https://doi.org/10.15672/hujms.1391474en_US
dc.identifier.issn1303-5010
dc.identifier.issn2651-477X
dc.identifier.urihttps://doi.org/10.15672/hujms.1391474
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9746
dc.description.abstractThe “local class field theory”, which can be defined as the description of the extensions of a given local field K with finite residue field of q = pf elements in terms of the algebraic and analytic objects depending only on the base K is one of the central problems of modern number theory. The theory developed for the abelian extensions, around the fundamental works of Artin and Hasse in the first quarter of the 20th century. It is natural to ask if one could construct this theory including the non-abelian extensions of the base field. There are two approches to this problem. One approach is based on the ideas of Langlands, and the other on Koch. Koch’s method was later generalized by Fesenko and Koch-de Shalit for specific type of non-abelian extensions of the base field. Laubie extended Koch-de Shalit’s work and constructed a local non-abelian class field theory for K. On the other hand, İkeda and Serbest extended Fesenko’s works to construct a non-abelian local class field theory for K, containing a pth root of unity. In this study, we extended İkeda-Serbest’s construction of the local reciprocity map for K containing a pth root of unity to any local field. Also we have shown that the extended map satisfies the certain functoriality and ramification theoretic properties. © 2025, Hacettepe University. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherHacettepe Universityen_US
dc.relation.ispartofHacettepe Journal of Mathematics and Statisticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectlocal class field theoryen_US
dc.subjectlocal fieldsen_US
dc.subjectlocal non-abelian reciprocity mapen_US
dc.titleLocal non-abelian class field theoryen_US
dc.typearticleen_US
dc.authorid0009-0007-6241-0944en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.institutionauthorBedikyan, Sevan
dc.identifier.doi10.15672/hujms.1391474en_US
dc.identifier.volume54en_US
dc.identifier.issue2en_US
dc.identifier.startpage542en_US
dc.identifier.endpage561en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidNGF-8726-2025en_US
dc.authorscopusid59904439100en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.wosWOS:001481894500014en_US
dc.identifier.scopus2-s2.0-105005541273en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster