Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydın, Yaren
dc.contributor.authorNiğdeli, Sinan Melih
dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorIşıkdağ, Ümit
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2025-06-11T10:40:01Z
dc.date.available2025-06-11T10:40:01Z
dc.date.issued2025en_US
dc.identifier.citationAydın, Y., Nigdeli, S. M., Bekdaş, G., Isikdag, U., & Geem, Z. W. (2025). 10 - application of adaptive harmony search and machine learning on optimization problems about strength of materials. In V. Silberschmidt, H. Singh, S. Rajput & A. Sharma (Eds.), Metaheuristics-based materials optimization (pp. 273–295) Woodhead Publishing. doi:10.1016/B978-0-443-29162-3.00010-1en_US
dc.identifier.urihttps://doi.org/10.1016/B978-0-443-29162-3.00010-1
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9764
dc.description.abstractIn structural design, the strength of materials is the key factor in design and applications including optimization covers the strength of material theory in design. The constraints are generally related to the strength of the material for different types of stress that occur under various external loading. The number of design problems using metaheuristics in the subject is high and these problems are generally used as benchmark examples in structural optimization. In this chapter, adaptive harmony search is presented for these problems and multiple cases of these problems are solved to obtain machine learning data. Then, artificial intelligence models that predict optimum results without a rerun of the iterative optimization process are generated. The models used are compared with performance metrics. These performance metrics are Coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Square Error (MSE). When the success of all regression models was analysed, it was seen that the model with the highest R2 (0.9994) and the low error values was Random Forest. © 2025 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherMetaheuristics-Based Materials Optimizationen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.titleApplication of adaptive harmony search and machine learning on optimization problems about strength of materialsen_US
dc.typearticleen_US
dc.authorid0000-0002-2660-0106en_US
dc.departmentFakülteler, Mimarlık Fakültesi, Mimarlık Bölümüen_US
dc.institutionauthorGeem, Zong Woo
dc.identifier.doi10.1016/B978-0-443-29162-3.00010-1en_US
dc.identifier.startpage273en_US
dc.identifier.endpage295en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidNBJ-5795-2025en_US
dc.authorscopusid25223356600en_US
dc.identifier.scopus2-s2.0-105006513599en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1576]
    Scopus | Abstract and citation database

Basit öğe kaydını göster