Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorİnan, Tüzün Tolga
dc.contributor.authorKocadağlı, Ozan
dc.date.accessioned2025-07-11T08:56:58Z
dc.date.available2025-07-11T08:56:58Z
dc.date.issued2025en_US
dc.identifier.issn1990-7710
dc.identifier.urihttps://doi.org/10.6125/JoAAA.202505_57(5).11
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9864
dc.description.abstractThe rapid expansion of the airline industry has intensified in-flight services to sustain passenger satisfaction and operational efficiency. This study investigates the causal relationship between in-flight service parameters and total passenger reviews by employing multiple machine learning models; Support Vector Machines (SVM), Neural Networks, Linear Regression, Gaussian Process Regression, Kernel Approximation Kernel, Classification Tree, and Ensemble Learning. In analysis, the feature importances of the boarding/deplaning efficiency, flight crew performance, in-flight entertainment, and Wi-Fi availability considered as key features of in-flight service that might affect the average passenger ratings were evaluated by Shapley and Lime approaches. According to the analysis result, SVM and Linear Regression models exhibit superior predictive performance, evidenced by the lowest Mean Squared Error (MSE) and Root Mean Square Error (RMSE) on test data. Specifically, SVM achieved an RMSE of 0.0385 and MSE of 0.00148, while Linear Regression model followed closely with an RMSE of 0.0368 and MSE of 0.00136. From the analysis results, Shapley and LIME feature important scores obtained from SVM and Linear Regression models highlight the critical impact of boarding/deplaning processes and crew efficiency on passenger satisfaction. From a managerial perspective, the study provides actionable insights for optimizing in-flight resource allocation and improving service delivery. © 2025 The Aeronautical and Astronautical Society of the Republic of China. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherThe Aeronautical and Astronautical Society of the Republic of Chinaen_US
dc.relation.ispartofJournal of Aeronautics, Astronautics and Aviationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAirline industryen_US
dc.subjectFeature importanceen_US
dc.subjectIn-flight servicesen_US
dc.subjectMachine learningen_US
dc.subjectPassenger satisfactionen_US
dc.titleThe Causal Relationship Between In-Flight Service Features and Air Transportation Passenger Reviews: Interpretable Machine Learning Modelsen_US
dc.typearticleen_US
dc.authorid0000-0003-4354-7383en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, İstatistik Bölümüen_US
dc.institutionauthorKocadağlı, Ozan
dc.identifier.doi10.6125/JoAAA.202505_57(5).11en_US
dc.identifier.volume57en_US
dc.identifier.issue5en_US
dc.identifier.startpage1299en_US
dc.identifier.endpage1312en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidAAO-2482-2021en_US
dc.authorscopusid57208567048en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.scopus2-s2.0-105008396277en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1582]
    Scopus | Abstract and citation database

Basit öğe kaydını göster