Özet
Due to environmental impacts and the need for energy efficiency, the cement industry aims to make more durable and sustainable materials with less energy requirements without compromising mechanical properties based on UN Sustainable Development Goals 9 and 11. Carbon dioxide (CO2) emission into the atmosphere is mostly the result of human-induced activities and causes dangerous environmental impacts by increasing the average temperature of the earth. Since the production of ordinary Portland cement (PC) is a major contributor to CO2 emissions, this study proposes alkali-activated binders as an alternative to reduce the environmental impact of ordinary Portland cement production. The dataset required for the training processes of these algorithms was created using Mendeley as a data-gathering instrument. Some of the most efficient state-of-the-art meta-heuristic optimization algorithms were applied to obtain the optimal neural network architecture with the highest performance. These neural network models were applied in the prediction of carbon emissions. The accuracy of these models was measured using statistical measures such as the mean squared error (MSE) and coefficient of determination (R2). The results show that carbon emissions associated with the production of alkali-activated concrete can be predicted with high accuracy using state-of-the-art machine learning techniques. In this study, in which the binders produced by the alkali activation method were evaluated for their usability as a binder material to replace Portland cement, it is concluded that the most successful hyperparameter optimization algorithm for this study is the genetic algorithm (GA) with accurate mean squared error (MSE = 161.17) and coefficient of determination (R2 = 0.90) values in the datasets.