Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydin, Yaren
dc.contributor.authorCakiroglu, Celal
dc.contributor.authorBekdas, Gebrail
dc.contributor.authorIsikdag, Umit
dc.contributor.authorKim, Sanghun
dc.contributor.authorHong, Junhee
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2025-01-09T20:08:04Z
dc.date.available2025-01-09T20:08:04Z
dc.date.issued2024
dc.identifier.issn2071-1050
dc.identifier.urihttps://doi.org/10.3390/su16010142
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7972
dc.description.abstractDue to environmental impacts and the need for energy efficiency, the cement industry aims to make more durable and sustainable materials with less energy requirements without compromising mechanical properties based on UN Sustainable Development Goals 9 and 11. Carbon dioxide (CO2) emission into the atmosphere is mostly the result of human-induced activities and causes dangerous environmental impacts by increasing the average temperature of the earth. Since the production of ordinary Portland cement (PC) is a major contributor to CO2 emissions, this study proposes alkali-activated binders as an alternative to reduce the environmental impact of ordinary Portland cement production. The dataset required for the training processes of these algorithms was created using Mendeley as a data-gathering instrument. Some of the most efficient state-of-the-art meta-heuristic optimization algorithms were applied to obtain the optimal neural network architecture with the highest performance. These neural network models were applied in the prediction of carbon emissions. The accuracy of these models was measured using statistical measures such as the mean squared error (MSE) and coefficient of determination (R2). The results show that carbon emissions associated with the production of alkali-activated concrete can be predicted with high accuracy using state-of-the-art machine learning techniques. In this study, in which the binders produced by the alkali activation method were evaluated for their usability as a binder material to replace Portland cement, it is concluded that the most successful hyperparameter optimization algorithm for this study is the genetic algorithm (GA) with accurate mean squared error (MSE = 161.17) and coefficient of determination (R2 = 0.90) values in the datasets.en_US
dc.description.sponsorshipKorea Institute of Energy Technology Evaluation and Planning (KETEP)en_US
dc.description.sponsorshipNo Statement Availableen_US
dc.language.isoengen_US
dc.publisherMdpien_US
dc.relation.ispartofSustainabilityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectalkali-activated concreteen_US
dc.subjectmachine learningen_US
dc.subjectartificial neural networksen_US
dc.subjectcarbon emissionen_US
dc.subjectoptimizationen_US
dc.titleNeural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithmsen_US
dc.typearticleen_US
dc.authoridBekdas, Gebrail/0000-0002-7327-9810
dc.authoridGeem, Zong Woo/0000-0002-0370-5562
dc.authoridIsikdag, Umit/0000-0002-2660-0106
dc.authoridCakiroglu, Celal/0000-0001-7329-1230
dc.authoridKim, Sanghun/0000-0002-1423-6116
dc.authoridAydin, Yaren/0000-0002-5134-9822
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.3390/su16010142
dc.identifier.volume16en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A
dc.identifier.wosWOS:001140378700001
dc.identifier.scopus2-s2.0-85181932025
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster