Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMartin, Ozgur
dc.contributor.authorSanders, Rebecca
dc.date.accessioned2025-01-09T20:14:23Z
dc.date.available2025-01-09T20:14:23Z
dc.date.issued2016
dc.identifier.issn0378-620X
dc.identifier.issn1420-8989
dc.identifier.urihttps://doi.org/10.1007/s00020-016-2293-2
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9029
dc.description.abstractComplementing the existing literature in d-hypercyclicity, we characterize disjoint supercyclicity for a finite family of weighted shift operators. Using this characterization, we answer Question 2 in a recent paper by BSs, Martin and Peris in the negative by constructing examples of disjoint supercyclic weighted shifts whose direct sum operator is hypercyclic, but the same shifts operators fail to be disjoint hypercyclic. We also show the Disjoint Blow-Up/Collapse Property and the Strong Disjoint Blow-Up/Collapse Property for disjoint supercyclicity are equivalent when dealing with a finite family with two or more weighted shifts. However, those weighted shifts operators will never satisfy the Disjoint Supercyclicity Criterion. This provides a sharp distinction between disjoint supercyclicity and supercyclicity for a single operator. We provide a partial answer to disjoint supercyclic version of Question 3 in a recent paper by Salas by showing that we can always select an additional operator to add to an family of d-supercyclic weighted shift operators while maintaining the d-supercyclicity. We also show that, in general, this additional operator cannot be another weighted shift.en_US
dc.description.sponsorshipTUBITAK [114C045]en_US
dc.description.sponsorshipOzgur Martin was supported in part by TUBITAK Bideb 2232, Project 114C045.en_US
dc.language.isoengen_US
dc.publisherSpringer Basel Agen_US
dc.relation.ispartofIntegral Equations and Operator Theoryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupercyclic vectorsen_US
dc.subjectSupercyclic operatorsen_US
dc.subjectUnilateral weighted backward shiften_US
dc.subjectBilateral weighted shiften_US
dc.titleDisjoint Supercyclic Weighted Shiftsen_US
dc.typearticleen_US
dc.authoridMartin, Ozgur/0000-0003-1605-1593
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1007/s00020-016-2293-2
dc.identifier.volume85en_US
dc.identifier.issue2en_US
dc.identifier.startpage191en_US
dc.identifier.endpage220en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ2
dc.identifier.wosWOS:000378004400003
dc.identifier.scopus2-s2.0-84964533520
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster